

Dynamic Data Quality for Static Blockchains

Alan G. Labouseur, Ph.D. Alan.Labouseur@Marist.edu

Carolyn C. Matheus, Ph.D. Carolyn.Matheus@Marist.edu

BlockDM @ ICDE 2019

Blockchain's popularity has changed the way people think about data access, storage, and retrieval. Because of this, many classic data management challenges are imbued with renewed significance. One such challenge is the issue of Dynamic Data Quality.

This is a story about the friction between static blockchains and Dynamic Data Quality, and how to fix it.

1. Shankaranarayanan, G. & Blake,R. (2017). From content to context: The evolution and growth of data quality research. Journal of Data and Information Quality 8(2), 9:1–9:28.

Daily Deluge of Data

We are awash in data deluge.

- It's constantly growing.
- It's constantly changing.
- It's constantly evolving.

It's complex.

- structured
- unstructured
- semi-structured

Piling up data is easy.

• Gaining insight from the data pile is hard.

Big Data Characteristics¹

- volume
- velocity
- variety
- ... and don't forget **veracity**

Can we believe it?

Data Quality

Errors associated with data ...

- collection
- storage
- retrieval
- representation

... are **long-standing** problems with serious implications. If your is low quality, then what good is it?

How long? Since before Big Data. Since the 1990s.

- + computers and digital records on the rise
- data increasingly generated, stored, and transferred in greater volumes by more people and machines.
- the Web was gaining traction beyond Gopher and Veronica
- more and more data from a hodgepodge of hardware, storage systems, and software platforms led to problems with data storage and accessibility affecting overall quality.

Data Quality

- stone tablets
- punched cards
- flat files on tape
- hierarchical databases on DASD
- network databases on disk
- relational databases
- object stores
- object-relational databases (Third Manifesto?)
- graph databases

Data Quality

Consider the evolution of Data Management

- stone tablets
- punched cards
- flat files on tape
- hierarchical databases on DASD
- network databases on disk
- relational databases
- object stores
- object-relational databases
- graph databases

Data Quality has been a **big deal** in all data management technologies for the last 30 years.

If blockchain is to flourish and evolve, Data Quality has to be a part of it.

< cue dramatic music />

Source: Wang, R. Y. and Strong, D. M. (1996). Beyond accuracy: What data quality means to data consumers. Journal of Management Information Systems, 12(4), 5-33.

Free of error Accessibility Interpretibility Accuracy **Appropriate Amount** Objectivity Believeability Precision Coherence Relevance Compatibility Reputation Completeness Security Representation Specificity **Timeliness** Consistency Ease of Manipulation Understandability Value-Added Fitness for Use

Sources:

Pipino, L.L., Lee, Y.W., & Wang, R.Y. (2002). Data quality assessment. *Communications of the ACM, 45*(4), 211-218. Wang, R. Y. and Strong, D. M. (1996). Beyond accuracy: What data quality means to data consumers. *Journal of Management Information Systems*, 12(4), 5-33.

Data Quality Dimensions

Some dimensions are well studied, particularly in the *relational* world, because they are well defined. But things change and there are more possibilities... evolve

Sources:

Pipino, L.L., Lee, Y.W., & Wang, R.Y. (2002). Data quality assessment. *Communications of the ACM, 45*(4), 211-218. Wang, R. Y. and Strong, D. M. (1996). Beyond accuracy: What data quality means to data consumers. *Journal of Management Information Systems*, 12(4), 5-33.

Modern data comes in many formats, structures, representations.

- One size does not fit all.
 - Relational systems are well suited for managing data structured as tables of rows and columns and performing common analytic tasks that graph systems are bad at such as creating segmentations based on attributes and combining data based on matching values.

Modern data comes in many formats, structures, representations.

- One size does not fit all.
 - Relational systems are well suited for managing data structured as tables of rows and columns and performing common analytic tasks that graph systems are bad at such as creating segmentations based on attributes and combining data based on matching values.
 - Graph systems are well suited for managing data structured as vertices and edges and performing common analytic tasks that relational systems are bad at such as finding clusters, determining shortest paths, and computing influence.

Modern data comes in many formats, structures, representations.

- One size does not fit all.
 - Relational systems are well suited for managing data structured as tables of rows and columns and performing common analytic tasks that graph systems are bad at such as creating segmentations based on attributes and combining data based on matching values.
 - Graph systems are well suited for managing data structured as vertices and edges and performing common analytic tasks that relational systems are bad at such as finding clusters, determining shortest paths, and computing influence.
 - **Blockchain systems** are well suited for managing append-only data preserved in trusted permanent stasis.
- The general challenge: **Fitness for Use** over time.

We live in an evolving world. Data is dynamic. Our needs change. Therefore Data Quality is dynamic.

Dynamic Data Quality requires flexible approaches for recasting the structure and representation of data as our needs change.

Source: Labouseur, A.G. & Matheus, C.C. (2017). An introduction to dynamic data quality challenges. Journal of Data and Information Quality 8(2), 6:1–6:3.

We live in an evolving world. Data is dynamic. Our needs change. Therefore Data Quality is dynamic.

Dynamic Data Quality requires flexible approaches for recasting the structure and representation of data as our needs change.

Questions for another time:

- What happens to Data Quality dimensions as we change the underlying representation of the data?
- What Data Quality trade-offs occur when we cast data from one representation to another?
- Can we enhance Data Quality as a side effect of changing its representation?

The question for now is...

Source: Labouseur, A.G. & Matheus, C.C. (2017). An introduction to dynamic data quality challenges. Journal of Data and Information Quality 8(2), 6:1–6:3.

Data Quality is dynamic.

But blockchain is static.

How can we align Dynamic Data Quality with a static structure like blockchain?

The friction between static blockchain and dynamic data quality gives rise to new research opportunities.

Free of error Accessibility Interpretibility Accuracy Objectivity **Appropriate Amount** Precision Believeability Coherence Relevance Compatibility Reputation Completeness Security Representation Specificity **Timeliness** Consistency Ease of Manipulation Understandability Fitness for Use Value-Added

We consider these dimensions in the blockchain context.

But first...

Sources:

Pipino, L.L., Lee, Y.W., & Wang, R.Y. (2002). Data quality assessment. *Communications of the ACM, 45*(4), 211-218. Wang, R. Y. and Strong, D. M. (1996). Beyond accuracy: What data quality means to data consumers. *Journal of Management Information Systems*, 12(4), 5-33.

Essential Blockchain

What is essential "blockchain-ness"?

Defining essential blockchain lets us avoid getting mired in (trivial and non-trivial) variations found among Bitcoin, Ethereum, Hyperledger, and all of the other blockchain implementations.

Essence and Accidents

From Aristotle...

- Aristotle
 - *Categories* (350 BCE) a philosophy of substance and being
 - four-fold system of classification:
 - accidental universals
 - essential universals
 - accidental particulars
 - non-accidental particulars

Essence and Accidents

From Aristotle to Fred Brooks

- Fredrick Brooks, in "No Silver Bullet" (1987), on the difficulties inherent in software development:
 - bridges the chaotic world of arbitrary complexity, forced without rhyme or reason by many human institutions and systems with the abstract, yet precise domain software affords.

Essence and Accidents

From Aristotle to Fred Brooks

- Fredrick Brooks, in "No Silver Bullet" (1987), on the difficulties inherent in software development:
 - bridges the chaotic world of arbitrary complexity, forced without rhyme or reason by many human institutions and systems with the abstract, yet precise domain software affords.

- As a result, managing complexity is a primary software development challenge.
- Complexity can be broken down into two Aristotelian areas:
 - **Essence** Difficulties inherent in the nature of software
 - Accidents Difficulties that attend its production but are not inherent
- Blockchain can be broken down into the same two Aristotelian areas.
- We're interested in blockchain's *essence*.

Transaction

Container for arbitrary data

Block

Container for transactions

- Created by grouping transactions
- Groupings often span a time period or some limit of transactions.

Blockchain

Append-only container for one or more blocks ...

Blockchain

Append-only container for one or more blocks where **blocks are ordered**, and where the ith block b_i depends on the prior block b_{i-1} to confirm b_i 's **permanent stasis** where $i \ge 1$.

Essential "blockchain-ness"

Transaction – a container for arbitrary data.

Block – a container for one or more transactions.

Blockchain – an append-only container for one or more blocks, where blocks are ordered, and where the ith block b_i depends on the prior block b_{i -1} to confirm b_i's permanent stasis where $i \ge 1$.

of blockchain instances cooperating for consensus.

With this powerful abstraction we are now ready to explore **dynamic** problems of *accessibility*, *representation*, and general *fitness for use* in the **static** world of blockchain.

Problems

Problems

General challenges in Dynamic Data Quality: *fitness for use*.

Some specific challenges: *availability* and *retrievability*

Other challenges involve transforming data into varying *formats* and *representations* to fit our evolving needs for its use. Remember, we'd like to...

- use relational tables to slice and dice our data into segments
- use graphs for measuring influence and finding clusters
- use blockchain for distributed trust

These problems of Dynamic Data Quality are currently being explored in the context of graph and relational systems. We explore them in the context of blockchain.

Problem: Accessibility

... the extent to which data are *available* and *retrievable*.

- encompasses data in both detail and aggregate form
- covers whether data are *formatted* and *represented* to be easily retrievable for a desired task.
- includes time lapse spanning request, retrieval, and delivery

Problem: Accessibility

... the extent to which data are *available* and *retrievable*.

- encompasses data in both detail and aggregate form
- covers whether data are *formatted* and *represented* to be easily retrievable for a desired task.
- includes time lapse spanning request, retrieval, and delivery

Query performance is often used to measure accessibility

... the extent to which data are *available* and *retrievable*.

- encompasses data in both detail and aggregate form
- covers whether data are *formatted* and *represented* to be easily retrievable for a desired task.
- includes time lapse spanning request, retrieval, and delivery

Query performance is often used to measure accessibility

- Addressed in traditional systems with query optimization and indexes or summaries.
- Problem for blockchain because we cannot generally **query** a blockchain in the common sense of the word.
- Rather, we must **crawl** from the most recent block backwards towards the Genesis block, searching.
- Without structures and metadata to support logtime search functions, we are stuck with linear search.

Source: C. Batini, et. al, Methodologies for data quality assessment and improvement," ACM Computing Surveys, vol. 41, no. 3, pp. 16:1–16:52

Problem: Representation

... the extent to which data are *concisely presented*, *well organized*, and *well formatted* for extracting meaningful information.

• Meaning requires context, which changes and evolves over time.

Source: Pipino, L.L., Lee, Y.W., & Wang, R.Y. (2002). Data quality assessment. Communications of the ACM, 45(4), 211-218.

Problem: Representation

... the extent to which data are *concisely presented*, *well organized*, and *well formatted* for extracting meaningful information.

- Meaning requires context, which changes and evolves over time.
- Addressed in traditional systems with flexibility to change the underlying format of our data to align with our dynamic *fitness for use* needs.
 - Example: Data initially captured in JSON format but later transformed to a graph for influence queries and then to relational tables for segmentations.

Problem: Representation

... the extent to which data are *concisely presented*, *well organized*, and *well formatted* for extracting meaningful information.

- Meaning requires context, which changes and evolves over time.
- Addressed in traditional systems with flexibility to change the underlying format of our data to align with our dynamic *fitness for use* needs.
 - Example: Data initially captured in JSON format but later transformed to a graph for influence queries and then to relational tables for segmentations.
- Problem for blockchain because its essential static nature does not permit flexibility to change its underlying format to suit our dynamic needs.
 - Any representation that requires crawling potentially lengthy portions of a blockchain to extract meaningful information cannot be considered concise.

Problems

Problems of *accessibility* and *representation* stem from **misalignment** between these dynamic data quality dimensions and the essential static and linear nature of blockchain.

tiny blockchain

A Solution

A Solution

We can align Dynamic Data Quality with a static structure like blockchain by using graphs.

Here's our tiny blockchain with transactions in red, green, and blue.

Blockchains are naturally graph-like.

- Blocks form a linked list, a special case of a graph.
- Transactions are leaf nodes of a (Merkle) tree, also a special case of a graph.

A Solution: Blockchain Snapshots as a Graph

We can align Dynamic Data Quality with a static structure like blockchain by using graphs.

Here's our tiny blockchain with transactions in red, green, and blue.

A Solution with Graph Tools

Blockchains are naturally graph-like. So we can use graph tools.

• Distributed graph databases can handle high velocity high volume data.

G*The Dynamic Graph Database

A Solution: Blockchain Snapshot as Graph

Algorithm 1: Generating a graph from a blockchain API

```
new graph;
lastBlockId \leftarrow null;
blockCount \leftarrow api/status?q=qetBlockCount;
for i \leftarrow blockCount-1 down to 0 do
    hash_i \leftarrow /api/block-index/i;
    block \leftarrow /api/block/hash_i;
   thisBlockId \leftarrow "block" || i;
    add vertex thisBlockId;
   transactions[]_i \leftarrow /api/txs/?block=hash_i;
    foreach tx in transactions[]_i do
       thisTxId \leftarrow thisBlockId \parallel "tx" \parallel tx.id;
        add vertex thisTxId;
       add edge thisTxId - thisBlockId;
    end
    if lastBlockId \neq null then
       add edge lastBlockId – thisBlockId;
    end
    lastBlockId \leftarrow thisBlockId;
end
```

BlockExplorer API calls and G*Studio DGQL code

Algorithm 1: Generating a graph from a blockchain API

```
new graph;
lastBlockId \leftarrow null;
blockCount \leftarrow api/status?q=getBlockCount;
for i \leftarrow blockCount-1 down to 0 do
    hash_i \leftarrow /api/block-index/i;
    block \leftarrow /api/block/hash_i;
   thisBlockId \leftarrow "block" || i;
    add vertex thisBlockId;
   transactions[]_i \leftarrow /api/txs/?block=hash_i;
    foreach tx in transactions []_i do
       thisTxId \leftarrow thisBlockId \parallel "tx" \parallel tx.id;
        add vertex thisTxId;
       add edge thisTxId - thisBlockId;
    end
    if lastBlockId \neq null then
       add edge lastBlockId – thisBlockId;
    end
    lastBlockId \leftarrow thisBlockId:
end
```

BlockExplorer API calls and G*Studio DGQL code

new graph

add vertex block2 with attributes (color=white) add vertex block2tx0 with attributes (color=blue) add edge block2tx0-block2 add vertex block2tx1 with attributes (color=blue) add edge block2tx1-block2 add vertex block2tx2 with attributes (color=blue) add edge block2tx2-block2 add vertex block2tx3 with attributes (color=blue) add edge block2tx3-block2 add vertex block2tx4 with attributes (color=blue) add edge block2tx4-block2 add vertex block2tx5 with attributes (color=blue) add edge block2tx5-block2 add vertex block2tx6 with attributes (color=blue) add edge block2tx6-block2 add vertex block1 with attributes (color=white) add edge block2-block1 add vertex block0 with attributes (color=white) add edge block1-block0

A Solution for Accessibility

Improve Accessibility with Graph Analytics

- Perform Optimized Queries
 - top-k queries
 - *n*-hop neighborhoods
 - pathfinding
 - influence measures by
 - degree centrality
 - betweenness centrality
 - PageRank

A Solution for Accessibility

Improve Accessibility with Graph Analytics

- Perform Optimized Queries
 - top-k queries
 - *n*-hop neighborhoods
 - pathfinding
 - influence measures by
 - degree centrality
 - betweenness centrality
 - PageRank
- Discover clusters and components
 - clustering coefficient
 - connected components
- Compute aggregates and summaries
 - count and max
 - degree distribution
 - network diameter

These tools are fit for resolving the misalignment between Dynamic Data Quality dimensions and static blockchains.

A Solution for Accessibility

Improve Accessibility with Graph Analytics

• Analyze pairwise snapshots of a blockchain peer network over time

There is interesting cyber security research to be done here.

A Solution for Representation

Improve Representation with Graph Storage

- Structural transformations with graph queries that output
 - JSON
 - SQL
 - XML
 - other formats as our needs evolve

A Solution for Representation

Improve Representation with Graph Storage

- Structural transformations with graph queries that output
 - JSON
 - SQL
 - XML
 - other formats as our needs evolve
- Improve *Concise Representation* with summaries and snapshots
 - support query efficiency
 - aid in visualization

These tools are fit for resolving the misalignment between Dynamic Data Quality dimensions and static blockchains.

Conclusions

Graph systems can resolve the misalignment between Dynamic Data Quality dimensions and static blockchains.

- Distributed storage and optimized queries support *Accessibility*.
- Queries computing summaries and aggregates support *Concise Representation* and visualization.
- Structural transformations support general *Representation*.

Conclusions and Future Work

Graph systems can resolve the misalignment between Dynamic Data Quality dimensions and static blockchains.

- Distributed storage and optimized queries support *Accessibility*.
- Queries computing summaries and aggregates support *Concise Representation* and visualization.
- Structural transformations support general *Representation*.

Future work

- Experiment with Algorithm 1 on larger data sets
- Develop new block structures/attributes to support summarization and log-time search functions using our *Essence Blockchain* research code
 - available to everyone at https://github.com/ Marist-Innovation-Lab/blockchain
 - Essential Blockchain code in Java
 - blockchain network peer viewer (with graph snapshot export to G*Studio)
 - *Demia* demo application

Marist-I	nnovation-Lab	/ blockchain				O Watch ▼	0 *:	Star 0	¥ For	k
Code	() Issues ()	1 Pull requests 0	Projects 0	🔲 Wiki	III Insights	Settings				
e Marist	Joint Study impl	ementation of blockc	hain and its netw	ork viewing t	ools.					E
B commits		β 1 branch				1 contributor		ு MIT		
Branch: ma	ster • New pull	request			Create new file	Upload files	Find File	Clo	ne or down	load
dgisolfi	Fixed README.md						Latest co	mmit 6b	8c17 3 day	ys a
lib		Added the ess	ence source code a	and compiled ja	r				22 day	rs a
out		Added bash so	Added bash script with example peer network						3 day	's a
SIC		Added vendor	Ace						3 day	's a
test/ess	sence/test	Added the ess	ence source code a	and compiled ja	r				22 day	's a
gitigno	re	Added Essenc	e Network viewer a	nd make target	s				3 day	's a
LICENS	E	Initial commit							22 day	's a
READM	E.md	Fixed README	.md						3 day	's a
makefile	Ð	Added Essenc	e Network viewer a	nd make target	s				3 day	's a
READM	E.md									
bl	ockchai	•								

Dynamic Data Quality for Static Blockchains

Thank You. Questions? Suggestions?

BlockDM @ ICDE 2019